PHOTOMETRY OF SOLID STATE LIGHTING IN THEORY AND PRACTICE

János Schanda and Katalin Gombos University of Pannonia Virtual Environments and Imaging Technologies Laboratory

Overview

Current photometric systems

- Standard system
- Experimental systems

Challenge by modern light sources

Up to date photometric detectors

- Illuminance meters
- Image resolving luminance meters
- Calculated stimulus related quantities perception related descriptions
- Needed "accuracy" in real life measurements
- Conclusions

Spectral luminous efficiency functions

CIE standard 2° SLE function: V(λ)
CIE modified 2° SLE function: V_M(λ)
CIE 10° SLE function: V₁₀(λ)
CIE deviate observer functions: y_{10Dev}(λ)

CIE TC 1-36 tentative SLE function: $V^*(\lambda)$

Spectral luminous efficiency functions

Investigated sources

Current photometric systems

- Standard system
- Experimental systems

Challenge by modern light sources

- CFL-s
- P-LED
- RGE-LED
- Up to date photometric detectors
- Calculated stimulus related quantities perception related descriptions
- Needed "accuracy" in real life measurements
- Conclusions

2856 K group				
Lamp designation	Correlated colour temperature, K	General colour rendering index, Ra	X	у
Illuminant A	2856	100	0,4476	0,4420
Compact fluorescent lamp	2895	85,7	0,4420	0,4016
p-LED	2879	72,5	0,4508	0,4165
RGB-LED	2885	31,5	0,4466	0,4091
6500 K group				
D65 illuminant	6503	100	0,3127	0,3290
CFL	6081	73,6	0,3189	0,3514
p-LED	7153	79,6	0,3023	0,3240
RGB-LED	6782	46,5	0,3091	0,3212

Spectral Power Distributions 1 WarmWhite spectra

Spectral Power Distributions 1 Daylight spectra

Current photometric systems Standard system Experimental systems Challenge by modern light sources Up to date photometric detectors - Illuminance meters Image resolving luminance meters Calculated stimulus related quantities – perception related descriptions Needed "accuracy" in real life measurements Conclusions

Up to date photometric detectors

- Photometric detectors with Si cells
 - Cosine corrected full filtered detectors
 - Full filtered thermostabilised luminous flux detectors
 - f₁' values: ~ 1.2 % - 1.5 %

Up to date photometric detectors

Image taking luminance/colorimetric instruments

- CCD detectors
- Usually not temperature stabilized

Tested theoretical functions and photometers

	f_1'	
$V(\lambda)$	0	
$V_{\rm M}(\lambda)$ function	0,73	
$V^{*}(\lambda)$ function	5,65	
$y_{10,d}(\lambda)$ function	9,47	
$V_{10}(\lambda)$ function	9,51	
CCD luminance meter-1	1,18	
Photometer-I	1,2	
y-channel of a tristimulus colorimeter	1,35	
Photometer-2	1,7	
Photometer-3r	1,87	
Photometer-4	2,27	
Photometer-5	3,01	
CCD luminance meter -2	14,26	Virtual Environment and
		Laboratory

Current photometric systems Standard system Experimental systems Challenge by modern light sources Up to date photometric detectors Illuminance meters Image resolving luminance meters Calculated stimulus related quantities – perception related descriptions Needed "accuracy" in real life measurements Conclusions

f_1^* value of theoretical functions

9,47

9,51

$V(\lambda)$		0,0

- $V_{\rm M}(\lambda)$ function 0,73 5,65
- $V^*(\lambda)$ function
- $y_{10,d}(\lambda)$ function
- $V_{10}(\lambda)$ function

 $V_{\rm M}(\lambda)$: practically no deviation; but the other functions compare to poor detectors

Photometric evaluations

- Photometric calibrations are usually made using as reference:
 - CIE st. Illum. A
 - CIE 1924 2°standard $V(\lambda)$ function
- Tests with the enumerated
 - sources
 - functions

780 nm

380nm

780 nm $S_{\lambda}(III.A)V(\lambda) d\lambda$ 380nm

 $S_{\lambda}(Test.Illum.)s(\lambda)d\lambda$

Virtual Environment and maging Technologies

Per Cent difference of measured photometric values

Current photometric systems Standard system Experimental systems Challenge by modern light sources Up to date photometric detectors - Illuminance meters Image resolving luminance meters Calculated stimulus related quantities – perception related descriptions Needed "accuracy" in real life measurements Conclusions

Perception related descriptions

- New standard descriptors needed for large field photometry
 - Open question: brightness evaluation
- Similar problems in mesopic photometry
 - Reaction time based descriptors: $V(\lambda) \& V'(\lambda)$
 - Threshold contrast sensitivity related descriptors: chromatic influence

Mesopic visibility

Threshold contrast sensitivity based spectral responsivity - Additive? Many new spectral visibility functions needed

Current photometric systems Standard system Experimental systems Challenge by modern light sources Up to date photometric detectors - Illuminance meters Image resolving luminance meters Calculated stimulus related quantities – perception related descriptions Needed "accuracy" in real life measurements Conclusions

Real life photometry, conclusions

 \checkmark V(λ) uncertain (in error) -> $V^*(\lambda)$: $-f_{1}$ ' up to 5 % difference compared to $V(\lambda)$. Different sources produce highly different measurement errors Better description: error for a number of sources

Thanks for your kind attention!

Best wishes to our host, Professor Pop!

